A Unified Approach to Algebraic Set Theory
نویسندگان
چکیده
Categorical logic studies the relation between category theory and logical languages, and provides a very efficient framework in which to treat the syntax and the model theory on an equal footing. For a given theory T formulated in a suitable language, both the theory itself and its models can be viewed as categories with structure, and the fact that the models are models of the theory corresponds to the existence of canonical functors between these categories. This applies to ordinary models of first order theories, but also to more complicated topological models, forcing models, realisability and dialectica interpretations of intuitionistic arithmetic, domain-theoretic models of the λ-calculus, and so on. One of the best worked out examples is that where T extends the theory HHA of higher order Heyting arithmetic [29], which is closely related to the Lawvere-Tierney theory of elementary toposes. Indeed, every elementary topos (always taken with a natural numbers object here) provides a categorical model for HHA, and the theory HHA itself also corresponds to a particular topos, the “free” one, in which the true sentences are the provable ones.
منابع مشابه
Categorically-algebraic topology and its applications
This paper introduces a new approach to topology, based on category theory and universal algebra, and called categorically-algebraic (catalg) topology. It incorporates the most important settings of lattice-valued topology, including poslat topology of S.~E.~Rodabaugh, $(L,M)$-fuzzy topology of T.~Kubiak and A.~v{S}ostak, and $M$-fuzzy topology on $L$-fuzzy sets of C.~Guido. Moreover, its respe...
متن کاملFuzzy Acts over Fuzzy Semigroups and Sheaves
lthough fuzzy set theory and sheaf theory have been developed and studied independently, Ulrich Hohle shows that a large part of fuzzy set theory is in fact a subfield of sheaf theory. Many authors have studied mathematical structures, in particular, algebraic structures, in both categories of these generalized (multi)sets. Using Hohle's idea, we show that for a (universal) algebra $A$, th...
متن کاملA Novel Reference Current Calculation Method for Shunt Active Power Filters using a Recursive Algebraic Approach
This paper presents a novel method to calculate the reference source current and the referencecompensating current for shunt active power filters (SAPFs). This method first calculates theamplitude and phase of the fundamental load current from a recursive algebraic approach blockbefore calculating the displacement power factor. Next, the amplitude of the reference mains currentis computed with ...
متن کاملA unified theoretical harmonic analysis approach to the cyclic wavelet transform (CWT) for periodic signals of prime dimensions
The article introduces cyclic dilation groups and finite affine groups for prime integers, and as an application of this theory it presents a unified group theoretical approach for the cyclic wavelet transform (CWT) of prime dimensional periodic signals.
متن کاملRough ideals based on ideal determined varieties
The paper is devoted to concern a relationship between rough set theory and universal algebra. Notions of lower and upper rough approximations on an algebraic structure induced by an ideal are introduced and some of their properties are studied. Also, notions of rough subalgebras and rough ideals with respect to an ideal of an algebraic structure, which is an extended notion of subalgebras and ...
متن کاملAn Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods
Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...
متن کامل